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Consideration is given to a process of solid metal target melting with the aid of an exponentially decreasing 

volume heat source. The problem is solved by the approximate analytical method with an error of about one 

per cent at temperatures up to values close to boiling points. 

Solving the problems on melting of a target exposed to the action of energy fluxes absorbed on its surface is 

a matter of concern of many researchers [1-10]. In [11 ] and some other works consideration is given to an 

exponentially decreasing volume source without an account of melting heat, with the temperature field found in the 

form of an integral of a special function. In [12 ], in the form of special functions the authors present the solution for 

a stationary temperature field with ablation from an exponentially decreasing volume source. Usually in applications 

it is most important to determine the temperature field and the depth of the melting zone in dependence on 

thermophysical characteristics of the target and parameters of the emerging heat flux. For this, approximate 

analytical methods or numerical computations using one of the finite-difference schemes are employed. 

In the present work we offer an approximate analytical solution to a melting problem in the case of an 

exponentially decreasing energy source with an account of melting heat absorption. Such an energy source arises, 

for instance, when some materials are exposed to laser radiation. 

Let the constant energy flux be incident onto a solid target and produce an exponentially decreasing volume 

heat flux in it. We shall consider a region near the center of a heating spot until the condition R>>x/-aT is fulfilled. 

Then the problem may be solved in the one-dimensional statemenfi Also, it is assumed that the absorbed density of 
the energy flux is larger than 109 W/m 2 and the temperature of the target surface does not exceed the boiling point 

of the metal. Then, as estimations show, heat losses from the target surface due to convection, radiation, and 

evaporation may be neglected as compared to the absorbed specific heat flux during melting and furthermore to the 

total energy flux density absorbed in the target. Once the target surface has been heated to the melting temperature, 

a near-surface melting layer is formed whose internal boundary of liquid and solid phases starts moving inside the 

target, while the external boundary remains stationary. The moving melting front undergoes absorption of the latent 

heat of a phase transition. Thermophysical characteristics of the metal and its melt are assumed equal and constant. 

Mathematically, the problem may be then written as follows: 
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We introduce the dimensionless quantities 
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Having used the function of the heat source [6 ] and taking approximately all the integrals analogously to 

[10 ], we arrive at the following expression for the temperature field: 
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The accuracy of the calculations for metals using (2) is about 1% of the maximum temperature value at the 

point z = 0. However, it includes the function of the melting zone depth s(t), which has not been yet determined. 

Having assumed z = s (t), T (z - s (t), t) = 1, we obtain the following transcendental equation for determination of s (t): 
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For metals, the parameter B is, as a rule, small. For instance, for titanium B -- 0 . 0 5 5 .  The parameter A may 

acquire any values. To illustrate the method, calculations are made for titanium at A -- 1. The results are compared 

to the case when absorption at the same energy contribution is superficial. Figure 1 depicts time dependences of the 
melting zone depth of the target obtained both with and without an account of absorption of the melting heat. It is 

seen that in the latter case the velocity of growth of the melting layer thickness at the moment of the onset of melting 

is infinite. In the case of superficial absorption the velocity of growth of the melting layer thickness at the moment of 

the onset of melting is finite in both cases. Besides, with volume absorption an account of the melting heat gives a 

more substantial correction for the time dependence of the melting layer thickness. As for the onset of melting in the 

case of volume absorption, it proceeds at a 2.5-fold longer time than in the case of superficial absorption. From Fig. 
2 it is evident that in the case of volume absorption the temperature of the target surface increases considerably more 
slowly; furthermore at the moment of the onset of melting on volume absorption and with an account of the melting 
heat the rate of growth of the target surface temperature becomes equal to zero. 
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Fig. 1. Time dependences of the melting zone depth of the target for superficial 
[1) B = 0; 2) 0.055 ] and volume [3) A = 1; B = 0; 4) 1 and 0.055 ] absorption with 
the same energy contribution (dimensionless coordinates). 
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Fig. 2. Time dependences of the target surface temperature for superficial and 
volume absorption with the same energy contribution (dimensionless 
coordinates). Designations are the same as in Fig. 1. 

N O T A T I O N  

t, time of energy flux action; tl, moment of the onset of target melting; z, spatial coordinate counted from 
the target surface to its depth; T(t, z), temperature field in the target; Tin, melting temperature of the target; R, 
radius of transverse localisation of energy flux on the target surface; 2, target thermal conductivity; a, target thermal 

diffusivity; 7, density; c, specific heat; Q, volume power of a heat source on the target surface; k, concentration 
coefficient of a volume heat source; s(t), depth of target penetration; L, latent specific heat of melting; B, Stefan 
constant; A, free parameter of the problem. 
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